Artem Pulkin

[er'tsjem]

Postdoctoral researcher at QuTech TU Delft

- 💴 gpulkin@gmail.com 🌐 pulk.in 🏠 Amsterdam NL 💳
- jobs: researcher, research engineer, data scientist, software engineer

Currently

Developing innovative machine learning approaches to engineer electronic materials and molecules addressing modern society challenges

Expertise

Computational condensed matter, quantum chemistry, numerical materials science, machine learning, many-body physics, research code development.

Education *

Docteur ès Sciences EPFL in physics Lausanne CH ☐ Specialized on: 2012-2017 numerical electronic structure, quantum simulations. Thesis: Electronic Transport in 2D Materials with Strong Spin-orbit Coupling (03/2017); supervisor: Oleg Yazyev

Master of Science Chalmers in applied physics Göteborg SE ■ Thesis: 2010-2012 Spintromechanical Aspects of Charge Transport in Nanostructures (06/2012); supervisor: Robert Shekhter

B.Sc. in Physics cum laude V.N. Karazin's State University Kharkiv UA 2006-2010

Research 🗳

Postdoc @ QuTech Delft university of technology NL =

Apr 2019-now

I am developing novel approaches based on machine learning to predict molecular dynamics and electronic structure properties of amorphous topological insulator materials. I am supervising a multi-disciplinary team of condensed matter and quantum nanoscience researchers aiming for real-world applications of these materials.

Postdoc @ Caltech US

Jul'17-Mar'19

I successfully carried out an ambitious postdoctoral project funded by a personal Swiss NSF grant P2ELP2_175281 in collaboration with prof. Garnet Chan group from Caltech. I developed and implemented first of its kind computational many-body quantum chemistry framework to model two-dimensional crystalline materials. I demonstrated the power of the approach by computing low-energy spectral properties of two-dimensional molybdenum disulphide.

Doctoral assistant @ EPFL CH

Oct'12-Apr'17

I discovered a new class of electronic band structure effects in two-dimensional transition metal dichalcogenides originating from the interplay of spin-orbit interactions and crystalline lattice symmetries. In collaboration with world-leading experimental groups, I was able to demonstrate these effects in real materials resulting in several high-impact publications.

Research assistant @ Seoul National University, KR 🔯

Jun'12-Aug'12

I studied electronic structure of edge states in models of overlapping topological graphene nanoribbons.

Research assistant @ Chalmers, SE

Aug'10-Jun'12

I designed a concept of a nanoscale spin-mechanical single-electron transistor (SET).

Teaching 🖺

Presenter at a mini-course on Electronic structure methods in TUD2020-nowTeaching assistant at Computational physics III EPFL: conducting practice2013-2016sessions, guiding B.Sc. and M.Sc. students, preparing examination, grading

Teaching assistant at General physics EPFL: conducting practice sessions, Fall 2015 answering students' questions

	Teaching assistant at Analysis III EPFL: conducting practice sessions, answering students' questions, preparing examination problems	Fall 2014
	Teaching assistant at Physics Workshop EPFL: conducting lab work in small groups of students, grading	Fall 2013
	Teacher of physics at Kharkiv high school 45: guiding high school students through advanced physics problem solving, preparing to physics competitions	2007-2010
Funding §	Computing time at national supercomputing facilities (SURF NL) Approximate equivalent of 26k EUR, 24 months project 45873	2020 - now
	Personal Swiss NSF grant to study abroad 80k CHF, 18 months, postdoctoral level (Early Postdoc.Mobility) grant P2ELP2_175281	2017-2019
Supervision	Katya Fouka, Masters @ Leiden University	2021
Extracurricular	Organizing a course on numerical modelling techniques with a focus on first-principles problems	2019 - now
	Co-organized a tensor network journal club with a focus on mathematical aspects of tensor network computations	2018
	Participated as a jury member in International Physics Tournament held in Lausanne CH	2013
Skills 〈	Theory: quantum condensed matter; first-principles approaches: Hartree-Fock, density functional theory (DFT), quantum chemistry (diagrammatic approaches); classical thermodynamics; machine learning.	
	Numerics and simulations: second quantization, tight-binding, neural and tensor networks, classical force fields, large-scale simulations, high-performance computing.	
	Codes, languages, packages: python (numpy, keras, pytorch, matplotlib, cython, core development: cPython, uPython), C, Java, Matlab, bash; Quantum Espresso, OpenMX, pyscf.	
	Soft: Critical analysis, problem solving, communicating (organizing discussions, presenting, paper/grant/documentation writing), full-cycle project management (idea - funding - implementation - reporting), supervision.	
Languages	English (proficient), Russian (mother), French (basic), Dutch (basic).	
Publications	Artem Pulkin, Daniel Varjas	in preparation
	Topological electronic properties of amorphous Bi2Se3	
	Artem Pulkin	
	A neural-network classical potential for simulating disorder in amorphous Bi2Se3	
	Artem Pulkin, Niket Agrawal, André Melo	2021
	miniff – A minimal implementation of classical and neural-network force fields in python	
	Zenodo doi:10.5281/zenodo.4626641 (2021) 🔗 link code	
	Artem Pulkin, Oleg Yazyev	2020
	Controlling the Quantum Spin Hall Edge States in Two-Dimensional Transition Metal Dichalcogenides	
	J. Phys. Chem. 11, issue 17 p. 6964 (2020) 🔗 arXiv	
	PySCF team	
	Recent developments in the PySCF program package	
	J. Chem. Phys. 153, 024109 (2020) 🔗 arXiv	

First principles coupled cluster theory of the electronic spectrum of the

Artem Pulkin, Garnet Kin-Lic Chan

transition metal dichalcogenides

Phys. Rev. B 101 241113(R) (2020) & arXiv

Manipulating Topological Domain Boundaries in the Single-Layer Quantum Spin Hall Insulator 1T´–WSe2

Nano lett. 19 (8) 5634-5639 (2019) & ACS

Sara Barja, Sivan Refaely-Abramson, Bruno Schuler, Diana Y. Qiu, **Artem Pulkin**, Sebastian Wickenburg, Hyejin Ryu, Miguel M. Ugeda, Christoph Kastl, Christopher Chen, Choongyu Hwang, Adam Schwartzberg, Shaul Aloni, Sung-Kwan Mo, D. Frank Ogletree, Michael F. Crommie, Steven G. Louie, Jeffrey B. Neaton, Oleg V Yazyev, and Alexander Weber-Bargioni

Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides

Nat. comm. 10 (1), 3382 (2019) & arXiv

Miguel M. Ugeda, **Artem Pulkin**, Shujie Tang, Hyejin Ryu, Quansheng Wu, Yi Zhang, Dillon Wong, Zahra Pedramrazi, Ana Martín-Recio, Yi Chen, Feng Wang, Zhi-Xun Shen, Sung-Kwan Mo, Oleg V. Yazyev and Michael F. Crommie

Observation of Topologically Protected States at Crystalline Phase Boundaries in Single-layer WSe2

Nat. Commun. 9 3401 (2018) @ arXiv

Artem Pulkin, and Oleg V. Yazyev

earlier

2018

2019

Robustness of the quantum spin Hall insulator phase in monolayer 1T' transition metal dichalcogenides

- J. Electron Spectrosc. Relat. Phenom. 219 72-76 (2017) & ScienceDirect
- Artem Pulkin, and Oleg V. Yazyev

Spin- and valley-polarized transport across line defects in monolayer MoS2

Phys. Rev. B 93 041419 (2016) @ arXiv

Sossi Lehtinen, Hannu-Pekka Komsa, **Artem Pulkin**, Michael Brian Whitwick, Ming-Wei Chen, Tibor Lehnert, Michael J. Mohn, Oleg V. Yazyev, Andras Kis, Ute Kaiser, and Arkady V. Krasheninnikov

Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2

ACS Nano 9 (3) 3274-3283 (2015) Ø ACS

T. Eelbo, M. Waśniowska, M. Sikora, M. Dobrzański, A. Kozłowski, **A. Pulkin**, G. Autès, I. Miotkowski, O. V. Yazyev, and R. Wiesendanger

Strong out-of-plane magnetic anisotropy of Fe adatoms on Bi2Te3

Phys. Rev. B 89 104424 (2014) 🔗 arXiv

Robert I. Shekhter, Artem Pulkin, Mats Jonson

Spintronic mechanics of a magnetic nanoshuttle

Phys. Rev. B 86, 100404(R) (2012) & APS

Anatoli M. Kadigrobov, Robert I. Shekhter, Igor Aronov, Sergeij I. Kulinich, Artem Pulkin, Mats Jonson

Microwave-induced spin-flip scattering of electrons in point contacts

Low Temperature Physics/Fizika Nizkikh Temperatur, 37 (11) 925 🔗 AIP

*links online

Presentations

▶ Electronic properties of amorphous topological insulator from first principles Real-space Simulations of Topological Matter and Disordered Materials (IOP) **UK**

Neural network approach to the amorphous topological insulator Bi2Se3 Physics@Veldhoven 2021 NL ≡

▼ Coupled-cluster study of two-dimensional transition metal dichalcogenides, Physics@Veldhoven 2020 NL
■

2021

2020

- ➡ Electronic and spin transport properties of two-dimensional transition metal dichalcogenides, WE-Heraeus-Seminar / Spin Transport in Complex Magnetic Structures, Bad Honnef **DE** ■
- ☐ First-principles coupled-cluster study of two-dimensional materials, Thomas Young Center Lunchtime Seminar Series, Imperial College, London UK

 ☐ First-principles coupled-cluster study of two-dimensional materials, Thomas Young Center Lunchtime Seminar Series, Imperial College, London UK
 ☐ First-principles coupled-cluster study of two-dimensional materials, Thomas Young Center Series |

 ☐ First-principles coupled-cluster study of two-dimensional materials, Thomas Young Center Series |

 ☐ First-principles coupled-cluster study of two-dimensional materials, Thomas Young Center Series |

 ☐ First-principles coupled-cluster study of two-dimensional materials, Thomas Young Center Series |

 ☐ First-principles |

 ☐ Fi
- Micropython on GSM microcontroller, Python meetup Rotterdam 2019, Rotterdam NL ≡
- ➡ First-principles diagrammatic methods, Entanglement in Strongly Correlated Systems school, Benasque ES
 ➡
- First-principles diagrammatic simulations of two-dimensional crystals, Uni Leiden **NL**
- First-principles diagrammatic simulations of solids, Uni Amsterdam NL =
- **▼** Electronic Properties of Materials Using Coupled-cluster Approach, Vrije Universiteit Amsterdam **NL**
- ► Electronic Transport and Topological Properties of 2D Transition Metal Dichalcogenides, Uni Delft **NL**
- The density matrix embedding theory, Technical University of **Denmark**
- ▼¹ 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties, Novel Quantum States in Condensed Matter conference, Kyoto JP •¹
- ☐ Electronic structure of line defects in 2D transition metal dichalcogenides: a transport perspective, SPS Annual Meeting, Lugano CH □
- ¶ Spin- and Valley-Polarized Transport across Line Defects in Monolayer MoS2, APS March Meeting, Baltimore **US** ■

Hobbies

Sports, $\ref{eq:sports}$ travels, cross-stitching, soldering, $\ref{eq:sports}$ lock picking, $\ref{eq:sports}$ board and video games, open-source projects.

2019

2018

earlier